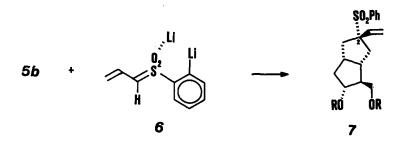
A CONCEPTUALLY NEW ROUTE TO OPTICALLY ACTIVE CARBA-PROSTACYCLINS: SYNTHESIS OF EXOCYCLIC ALKENES VIA DOUBLY LITHIATED ALLYL SULFONES

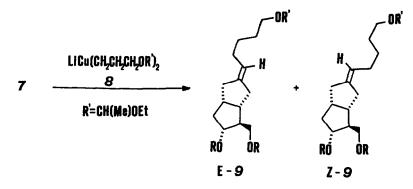
Hans-Joachim Gais*, Walter A. Ball and Jörg Bund

Chemisches Laboratorium der Albert-Ludwigs-Universität Institut für Organische Chemie und Biochemie, D-7800 Freiburg i. Br. (FRG)

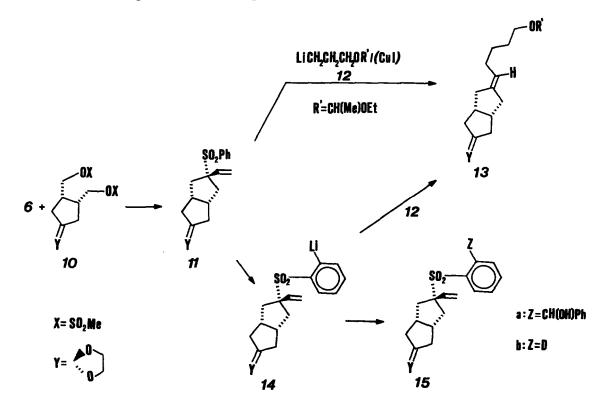
Summary: The use of the o, a^{-} and a, a^{-} dilithiosulfones 6 and 16, respectively for geminal cycloalkylation followed by cuprate substitution provides a novel synthon for 1.1-dilithioalkenes. Starting from the enantiomerically pure dimesylate 5b and using 6 a conceptually new route to optically active carbaprostacyclins 2 via the bicyclic allyl sulfones 2S/2R-7 and their substitution with the cuprate 8 to the alkenes E/Z-9 has been realized. Substitution of 11 with 2-3 equiv RLi proceeds via the o-lithioaryl sulfone 14 to yield rac-13. Cycloalkylation of 16 with the dimesylate 10 provided the alkyl allyl sulfone 17 which, too, gave rac-13 upon substitution with 8.

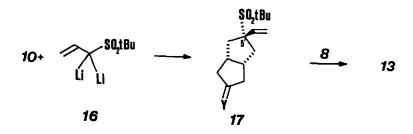
Prostacyclin (1) is the most potent endogenous inhibitor of blood platelet aggregation and a strong vasodilator.¹ However, its rapid hydrolysis severely limits the therapeutic usefulness. The carba-prostacyclins 2 have emerged as a important class of stable analogues.² Side chain modified 2b, e.g., shows the same biological profile and potency as $1.^{2b}$ Whereas several different routes to rac-2 have been reported,² enantioselective synthesis of 2 has been accomplished mainly from optically active "Corey lactone" via bicyclo[3.3.0]octanone derivatives.² others.


Here we describe a conceptually new entry into optically active 2 featuring the geminal cycloalkylation of the o, a-dilithioallyl phenyl sulfone 6 with the chiral cyclopentanoid dimesylate 5b and the substitution of the bicyclic allyl sulfones 2S/2R-7 with the cuprate 8 as key steps. The educt for the synthesis of 5b is the bicyclic lactone 4 which is derived in three steps from the hydroxy ester 3.4 The latter may be obtained enantiomerically pure from cis-1,2-cyclohex-4-enedicarboxylate by a route amendable to large-scale using an efficient enzyme catalyzed hydrolysis as chirality generating step.⁸ Réduction (LiAlH₄, THF, 0 °C) to the diol 5a followed by mesylation (MsCl, Py, -10 °C) converted 4 into the crystalline dimesylate 5b in 80% overall yield.


R=SitBuMe,

a: X= H b: X=SO₂Me


Treatment of the o, α -dilithiosulfone $6^{\circ, 7}$ with 5b in THF at -30 °C smoothly led in 89% yield via alkylation, transmetallation and geminal cycloalkylation to the readily separable bicyclic allyl sulfones 2S-7 and 2R-7 in a ratio of 5:1. Comparison of their ¹H NMR data with those of the similar system 11° whose structure was determined by X-ray analysis,⁸ strongly suggests the major diastereomer to be the one with the 2S configuration.


The bicyclooctane derivatives 2S/2R-7, which are at the position of the double bond to be generated geminal functionalized with a sulfonyl and vinyl group, cleanly underwent as the epimeric mixture a regioselective $S_8 2'$ -type reaction⁹ with the cuprate 8^{10} (3 equiv) in THF at -60 °C to give a 2:1 mixture of the exocyclic alkenes E-9 and Z-9 in 88% yield. Gratifyingly, no α -substitution product or endocyclic isomers of 9 could be detected.¹¹ The configuration of the double bond of E-9 and Z-9 was assigned by comparison of their ¹³C NMR data with those of 2b and its Z isomer.^{2b} The attainment of 9 represents a new entry into 2, since 2a has already been synthesized from a closely related intermediate.¹² This route should especially allow for upper side chain variations. The selectivity achieved in the substitution of 7 for the generation of the 5E-double bond of 2, however, does not yet represent an improvement over alternative routes.^{2**}

In extension of this new methodology for the synthesis of exocyclic alkenes the achiral aryl allyl sulfone 11, which was obtained by cycloalkylation of 6 with the dimesylate 10^6 (THF, 0 °C to 25 °C; 85% yield; 5'r:5's = 6.5:1), could be converted either by the cuprate 8 (3 equiv) or the organolithium compound 12^{10} (2 equiv) and a catalytic amount of CuI in THF at -40 °C to the exocyclic alkene rac-13 in 92% yield. Here, too, no α -substitution product or endocyclic isomer of 13 was found. Without CuI substitution of 11 with organolithium compounds takes a different and rather interesting course. Thus, 11 reacts with 1.1 equiv of phenyl lithium or 1.1 equiv of 12 in THF or ether at -60 °C to 0 °C under ortho lithiation to the α -lithiophenyl allyl sulfone 14 which could be easily intercepted with benzaldehyde or DsO to the allyl sulfones 15a (85%) and 15b (88%), respectively. Upon treatment of 14 with 1.5 equiv of 12 at 25 °C rac-13 was slowly formed in 90% yield.¹³

Substitutions with 8 or other cuprates are not restricted to phenyl allyl sulfones. Thus the tert-butyl allyl sulfone 17 synthesized by a facile cycloalkylation of the new α , α -dilithicallyl sulfone 16¹⁴ with 10 (THF, -25 °C, 91% yield, 5's:5'r = 6:1) also gave rac-13 in 86% yield upon treatment with 8.

Investigations aimed towards a stereoselective substitution of 7, 11 and 17 with chiral cuprates are actively persued in our laboratory.^{15,16}

Acknowledgment. We are grateful to the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and Merck Co., Darmstadt, for generous support of this research.

Literature and Notes

(1) J. R. Vane, Angew. Chem. Int. Ed. Engl. 1983, 22, 741.
(2) (a) R. C. Nickolson, M. H. Town, H. Vorbrüggen, Med. Res. Rev. 1985, 5, 1 and references cited therein. (b) K. V. Schenker, W. von Philipsborn, C. A.

Rvans, W. Skuballa, G. A. Hoyer, Helv. Chim. Acta 1986, 69, 1718.
(3) For the synthesis of 2 not relying on "Corey lactone", see: (a) K. Mori,
M. Tsuji, Tetrahedron 1986, 42, 435. (b) K. Kojima, S. Amemiya, K. Koyama, K. Sakai, Chem. Pharm. Bull. 1985, 33, 2688. (c) Z.-F. Xie, K. Funakoshi, H.
Suemune, T. Oishi, H. Akita, K. Sakai, Chem. Pharm. Bull. 1986, 34, 3058. (d) Y. Nagao, T. Nakamura, M. Ochiai, K. Fuji, E. Fujita, J. Chem. Soc.,Chem. Commun. 1987, 267. (4) H.-J. Gais, H. J. Lindner, T. Lied, K. L. Lukas, W. A. Ball, B.

Rosenstock, H. Sliwa, Liebigs Ann. Chem. 1986, 1179.

(5) (a) H.-J. Gais, R. L. Lukas, W. A. Ball, S. Braun, H. J. Lindner, Liebigs Ann. Chem. 1986, 687. (b) B. F. Riefling, W. K. Brümmer, H.-J. Gais,

NATO ASI Ser.C 1986, 178, 347. (6) J. Vollhardt, H.-J. Gais, K. L. Lukas, Angew. Chem. Int. Ed. Engl. 1985, 24, 608.

(7) H.-J. Gais, J. Vollhardt, Tetrahedron Lett., submitted.

(8) H. J. Lindner, private communication.

 (9) (a) Y. Masaki, K. Sakuma, K. Kaji, J. Chem. Soc., Perkin Trans. I 1985,
 (b) M. Julia, A. Righini, J. N. Verpeaux, Tetrahedron 1983, 39, 3283. 1171. (10) P. E. Eaton, C. F. Cooper, R. C. Johnson, R. H. Müller, J. Org. Chem. 1972, 37, 1947.

 (11) Upon treatment of *B/Z-9* in methanol with conc. HCl at 50 °C a 1:1 mixture of the corresponding diastereomeric endocyclic triols was formed.
 (12) Y. Konishi, M. Kawamura, Y. Iguchi, Y. Arai, M. Hayashi, *Tetrahedron* 2027. **1981**, *37*, 4391.

(13) However, see: M. Julia, M. Nel, D. Uguen, Bull. Soc. Chim. Fr. 1987, 487.

(14) The α, α -dilithiosulfone 16 was obtained by metalation of tert-butyl allyl sulfone with *n*-BuLi (2 equiv, THF/TMEDA, ~ 80 °C to 25 °C) and characterized by 'H NMR spectroscopy; H.-J. Gais, J. Vollhardt, to be published.

(15) J. Bund, Diploma Thesis, Technische Hochschule Darmstadt, 1987. (16) All compounds gave satisfactory spectral and/or analytical data. 5a: mp 33-35 °C, $[\alpha]_{8}^{\circ}$ -49.0° (c 1.31, CH₂Cl₂). 5b: mp 53-54 °C, $[\alpha]_{8}^{\circ}$ -10.6° (c 1.05, CH₂Cl₂). 2S-7: mp 71-72 °C, $[\alpha]_{8}^{\circ}$ -83.8° (c 0.50, CH₂Cl₂). B/Z-9: [α]B°-22.8° (c 0.85, CHCl₈).